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Vector Index on Edge Devices 

- With generative AI advances, semantic search now 

outperform keyword-based search – power by 

approximate nearest neighbor (ANN) search in vector 
space.

- Edge applications of semantic search: personalized 

search, on-device assistants, and privacy-preserving 

retrieval (e.g., RAG over local data) 

Challenges: Deploy ANN on Edge Devices 

Naive solution hurts both accuracy and efficiency of 
ANNS.

Setup 

Key Methods

● Fast HNSW Graph-Based Recomputation with two-level 
search and batched execution eliminates the need for storing 

pre-computed embeddings, while keeping latency low.

● High-Degree-Preserving Graph Pruning  removes redundancy 

in graph, cutting storage with minimal quality loss.

Hardware: NVIDIA A10 & Apple Macbook M1
IR Datasets: NQ, Trivia-QA, GPQA, HotpotQA

Baselines: HNSW, IVF, DiskANN, IVF-Disk, 

PQ-Compression, EdgeRAG(IVF-Recompute)

Evaluation  Results

- Huge storage (SSD) consumption:
- High-dimensional  embedding vectors
- Complex graph structures

75GB of personal docs require over 200GB storage, a 

270% increase that is impractical for PC.

Personal Data 
(76GB)

Embeddings 
(180GB)

Graph Structures 
(5GB)

Or

Smart 
Recomputation

0GB

High-Degree-Preserve  
Pruning

2GB

Storage Latency Trade-off:

Reach SOTA of accuracy in 

less than 2s

3.[Ablation study] Latency Optimization

4.[Ablation study] Graph Pruning 

(1) Naive Compression: quantization or simply  
recomputation on-demand, greatly increasing latency.

(2) Naive Graph Pruning: reduce the connectivity of 
graph, hurt the ANNS quality w/ certain compute 
budget. 

1.[Main result] Latency Storage Trade-off 

2.[Main result] Accuracy 


