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Graph Neural Network (GNN)

* Learn representation by neighbor aggregation and message passing:
h¥ = o[AGG*({W*h, 1, Vu € N(v)]]

* Down-stream applications:
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Training Graph Neural Network

* Graph Sampling: Sample multi-hop neighbors of the seed node.
* Feature Loading: Load features of the sampled nodes.
* Model Training: Compute GNN forward/backward traces.

Graph Sampling Feature Loading Model Training
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Before Training GNNs...

* The whole graph will be loaded from disk to memory.

CPU GPU

Disk




Before Training GNNs...

* The whole graph will be loaded from disk to memory.

* Not feasible for large graphs in resource-constrained environments.

Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

/Memory\
/ Disk \

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS

Disk



Before Training GNNs...

* We can only store the whole large graphs on disk.
* How to train GNNs in reasonable time on slower storage?

GPU

Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

/Memory\
/ Disk \

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS

Storage Type RD IOPS (4KB) Bandwidth Price ($/GB)
DRAM (DDR4) >10M 25 GB/s 11.13
AWS NVMe 625k 3 GB/s 0.125
AWS gp3 16k 2.5 GB/s 0.08




Out-of-core GNN Training

Problem: Existing systems either lack efficiency or degrade model accuracy.

Node-wise disk access: Suffer from Disk Read Amplification.

Block-wise disk access: Suffer from Degraded Model Accuracy.



Out-of-core GNN Training

Node-wise disk access (Ginex, GIDS, Helios):
* Fine-grained accesses are smaller than a disk page (4KB).

CPU Q Feature Loading Q E
G — ©
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—————————————————————————————————————————

____________________________________________

Disk Feature Layout 2x Read Amplification!
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Out-of-core GNN Training

Node-wise disk access (Ginex, GIDS, Helios):
* Fine-grained accesses are smaller than a disk page (4KB).

CPU Q Feature Loading Q E
G — ©
G 6 E © E C E

—————————————————————————————————————————

____________________________________________

Disk Feature Layout

8x read amplification when feature dimension is 128 (FP32)!




Out-of-core GNN Training

Block-wise disk access (MariusGNN):
* Cross-partition edges are ignored during sampling.

CPU (A—D)
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Out-of-core GNN Training

Block-wise disk access (MariusGNN):
* Cross-partition edges are ignored during sampling.

CPU (A)—0) &) E Degrade Model Accuracy!
:\ ® (~“2% in practice)
Sample -
© (& m—— G,,x E E

Disk @ equentiaIRead G
K S O~

F, | F, | Fp | Fg Fy | Fr | Fx Fy | F,
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DiskGNN: Offline Sampling

Sampling & training can be decoupled:

e Observation: accuracy is not harmed with sufficient minibatches.

Graph Sample

SE| |k
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Model Train

Interleaved Execution
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Offline Sampling



DiskGNN: Offline Sampling

Graph Sample Graph Sample

% o o0,

Model Train Model Train

Interleaved Execution Offline Sampling

Benefits to out-of-core training:

 Better feature cache strategy: less disk I/O volume.
* Better disk data layout: lower read amplification.



DiskGNN: System Design

Built on top of offline sampling:
* Cache node features in GPU and CPU memory by global hotness.

Original Data Layout Reorganized Data Layout
GPU Cache
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riginal Features
q
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DiskGNN: System Design

Built on top of offline sampling:
* Cache node features in GPU and CPU memory by global hotness.
* Pack cache-missed features in contiguous disk storage.

Original Data Layout Reorganized Data Layout
GPU Cache
Original Feat CPU Cache
riginal Features
g —, |l000000
Go| Gy | - |Gy
Graph Samples TTT1 [T
via Offline Sampling Packed | A
Feature: |, L |Gyl




DiskGNN: Challenges & Solutions

Challenge 1: Feature Packing introduces replication of data.
* Might consume too much disk storage (e.g., 10x on IGB-HOM).
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DiskGNN: Challenges & Solutions

Challenge 1: Feature Packing introduces replication of data.
 Solution: introduce another cache on disk to reduce replication.

Original Data Layout Reorganized Data Layout
GPU Cache
. . CPU Cache
Original Features — O [ S
q —— By =
_ Disk Cache
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DiskGNN: Challenges & Solutions

Challenge 2: Fetching data from disk cache is still random read.

 Random read from disk cache involves read amplification.

Mini-batch Input NID
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DiskGNN: Challenges & Solutions

Challenge 2: Fetching data from disk cache is still random read.

 Solution: reorder disk cache (MinHash) to reduce read amplification.

Mini-batch Input NID
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DiskGNN: Challenges & Solutions

Challenge 2: Fetching data from disk cache is still random read.

 Solution: reorder disk cache (MinHash) to reduce read amplification.

Segmented Disk Cache with MinHash:

| —> Gilobal
—&— Segmented

No-reorder
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DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
* Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

Go G4 X
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DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
* Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches
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DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
* Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches
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DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
e Solution: change iteration order from mini-batches to node features.

Iterate over the node features
Go Gq >
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DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
e Solution: change iteration order from mini-batches to node features.

Iterate over the node features
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DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
e Solution: change iteration order from mini-batches to node features.

Iterate over the node features
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DiskGNN: Other Techniques

* Multi-layer feature assembling with low overhead.

* Asynchronous I/O interface (io_uring).
e Overlapping model training with data movement.



Evaluation

Hardware:
* A single machine with 1 NVIDIA A10 GPU of 24GB memory on AWS EC2.
 DDR4 memory with 25GB/s bandwidth and >10M IOPS.
1 NVMe SSD with 3GB/s bandwidth and 625k IOPS.

Baselines:
* Node-wise disk access system: Ginex [VLDB’22].
* Block-wise disk access system: MariusGNN [Eurosys’23].

Datasets:
e Ogbn-Papers100M (78GB), Friendster (90GB).
« MAG240M (145GB), IGB-HOM (158GB).

Models:
* GraphSAGE [NeurlIPS’17], GAT [ICLR’18].



Evaluation: Model Accuracy & E2E Time

* DiskGNN shows similar convergence rate with Ginex.
* DiskGNN achieves the shortest training time.

Using 1-epoch of pre-sampled subgraphs

P >

(&) (&
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Number of Epochs Time (hrs)



Normalized Runtime

Evaluation: Epoch Time Comparison

* DiskGNN outperforms Ginex by ~8x and MariusGNN by ~2x.
e By batched packing, DiskGNN has a low preprocessing overhead (<5%).

Cache ratio: 10% of whole graph

[ 1 DiskGNN X\J DiskGNN+Preprocess .24 MariusGNN [IIII1 MariusGNN+Preprocess &N Ginex = Ginex+Preprocess L.:.1 DGL-OnDisk

72.39 12.0686.5 38.13 1132
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(a) GraphSAGE
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Evaluation: Disk Storage Budgets

* DiskGNN can adapt to different disk storage budgets with adjustable

disk cache configuration.

Normalized Runtime
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[ ] Unlimited B 7x KN 5x

/1 3x XN Ginex
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;
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Friendster
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Evaluation: Batched Packing

e Batched packing speeds up preprocessing time by up to 10x.

| = Individual Packing =51 Batched Packing 7771 Feature Loading |
£ gl ] 7
: o g 7, //
5 6
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= 7,
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2 D e O wie O e U
Ogbn-papers100M  MAG240M Friendster IGB-HOM



Takeaway

» Offline sampling does not harm accuracy with sufficient mini-batches.
* Empirically 1-epoch mini-batches are enough for node classification.

* By observing all mini-batches, data accesses can be largely optimized.

* Better cache management to reduce I/O volume.
* Aligned disk data placement to mitigate read amplification.

Code available at https://github.com/Liu-rj/DiskGNN.

Personal Homepage: https://liu-rj.github.io/ (Renjie Liu),
https://yichuan520030910320.github.io/ (Yichuan Wang).
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