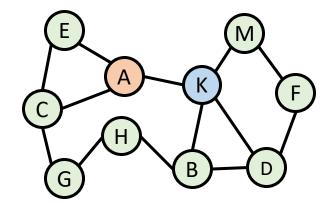


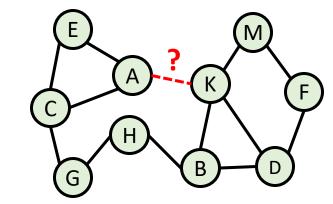
DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training

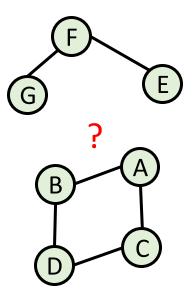
Renjie Liu*¹, Yichuan Wang*², Xiao Yan³, Haitian Jiang⁴,
Zhenkun Cai⁵, Minjie Wang⁵, Bo Tang¹, Jinyang Li⁴
1SUSTech, 2UC Berkeley, 3CPII HK, 4New York University, 5AWS *Equal Contribution

Graph Neural Network (GNN)

- Learn representation by neighbor aggregation and message passing: $h_v^k = \sigma[AGG^k(\{W^k h_u^{k-1}, \forall u \in N(v)\})]$
- Down-stream applications:







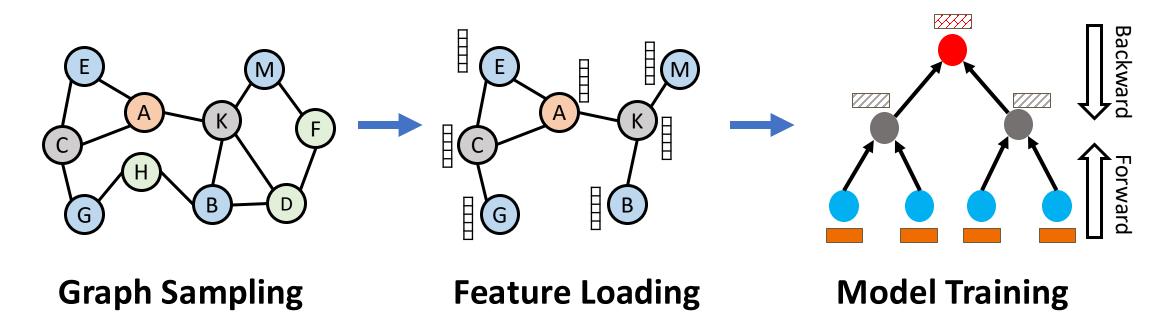
Node Classification

Link Prediction

Graph Classification

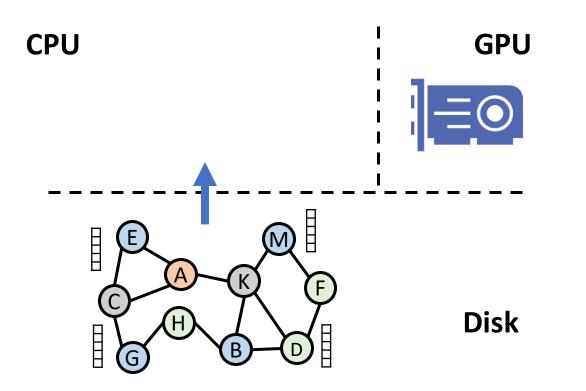
Training Graph Neural Network

- Graph Sampling: Sample multi-hop neighbors of the seed node.
- Feature Loading: Load features of the sampled nodes.
- **Model Training**: Compute GNN forward/backward traces.



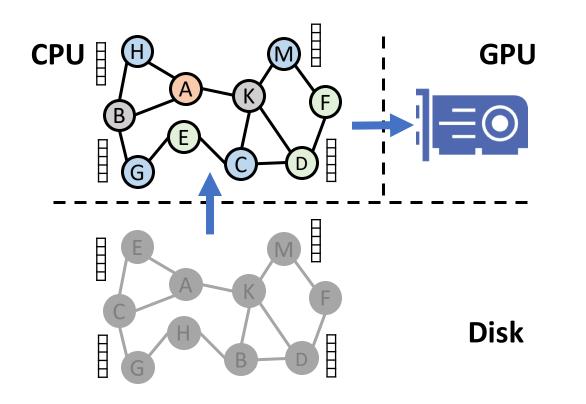
Before Training GNNs...

• The whole graph will be loaded from disk to memory.



Before Training GNNs...

- The whole graph will be loaded from disk to memory.
- Not feasible for large graphs in resource-constrained environments.



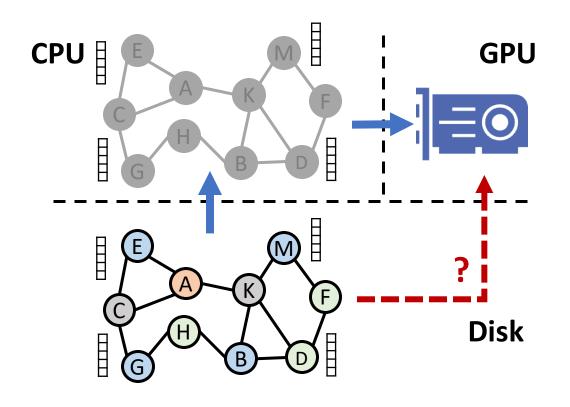
Memory (DDR4) Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

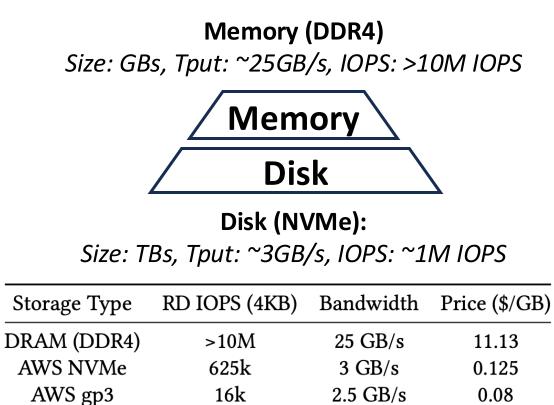


Disk (NVMe): Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS

Before Training GNNs...

- We can only store the whole large graphs on disk.
- How to train GNNs in reasonable time on slower storage?





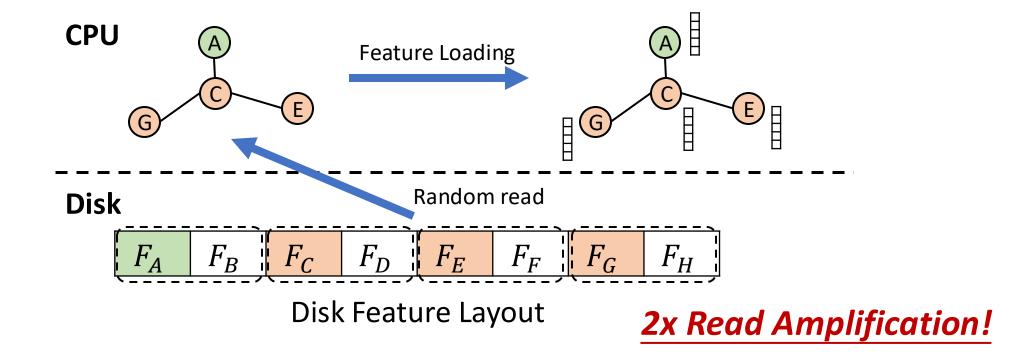
Problem: Existing systems either lack efficiency or degrade model accuracy.

Node-wise disk access: Suffer from **Disk Read Amplification**.

Block-wise disk access: Suffer from **Degraded Model Accuracy**.

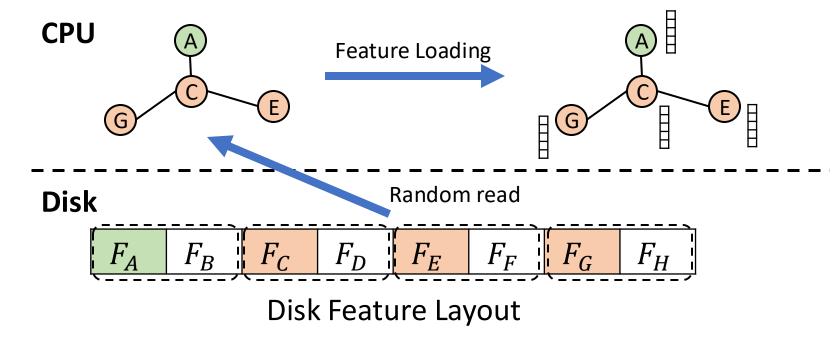
Node-wise disk access (Ginex, GIDS, Helios):

• Fine-grained accesses are smaller than a disk page (4KB).



Node-wise disk access (Ginex, GIDS, Helios):

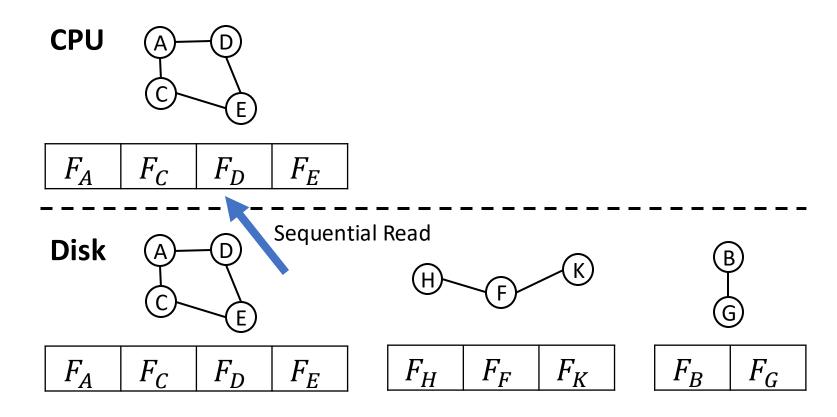
• Fine-grained accesses are smaller than a disk page (4KB).



8x read amplification when feature dimension is 128 (FP32)!

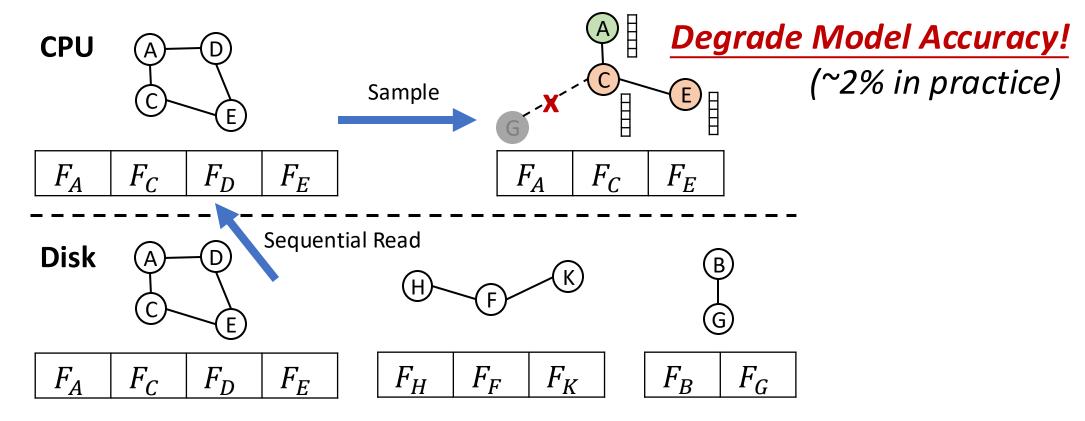
Block-wise disk access (MariusGNN):

• Cross-partition edges are ignored during sampling.



Block-wise disk access (MariusGNN):

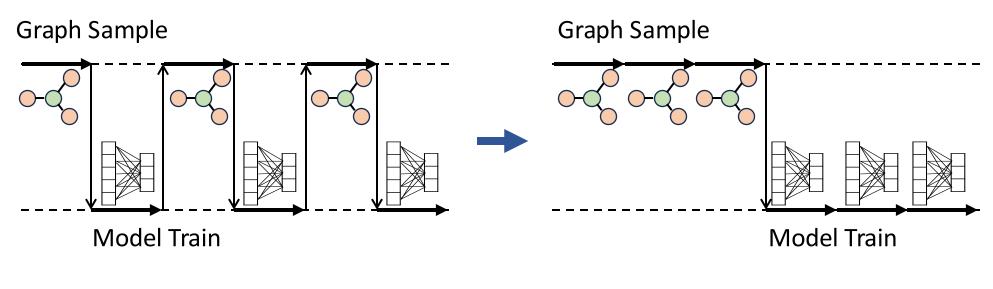
• Cross-partition edges are ignored during sampling.



DiskGNN: Offline Sampling

Sampling & training can be decoupled:

• Observation: accuracy is not harmed with sufficient minibatches.

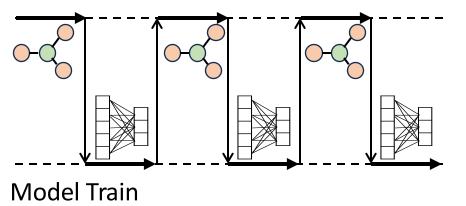


Interleaved Execution

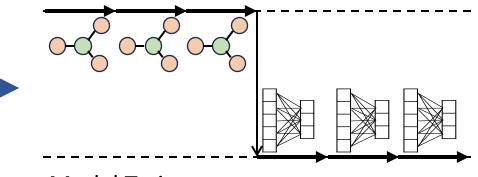
Offline Sampling

DiskGNN: Offline Sampling

Graph Sample



Graph Sample



Model Train

Interleaved Execution

Offline Sampling

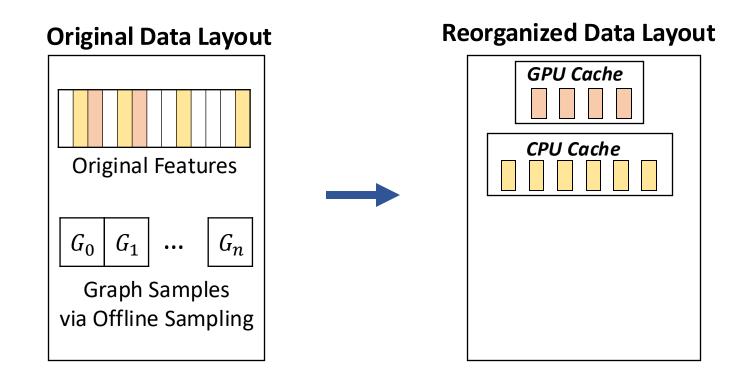
Benefits to out-of-core training:

- Better feature cache strategy: less disk I/O volume.
- Better disk data layout: lower read amplification.

DiskGNN: System Design

Built on top of offline sampling:

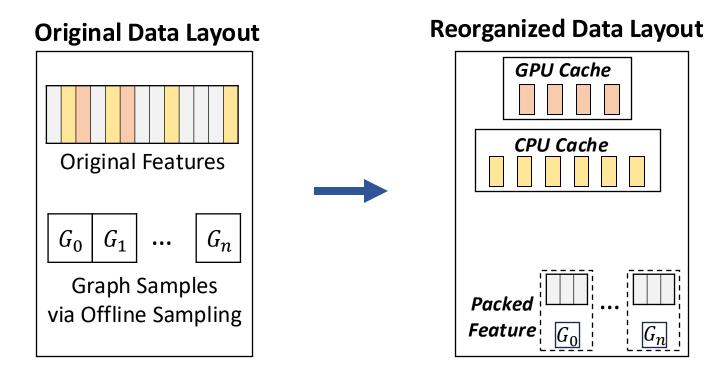
• Cache node features in GPU and CPU memory by global hotness.



DiskGNN: System Design

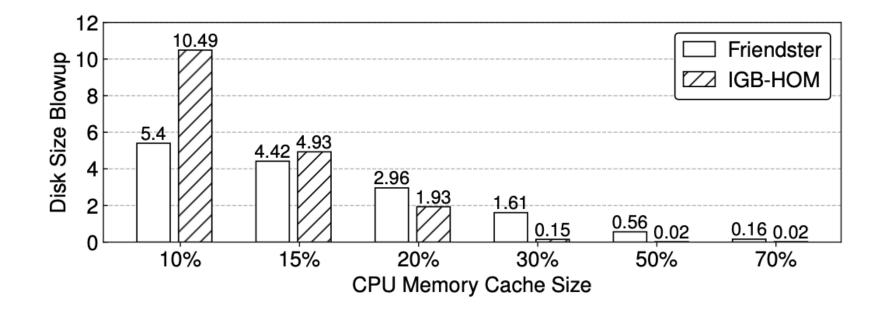
Built on top of offline sampling:

- Cache node features in GPU and CPU memory by global hotness.
- Pack cache-missed features in contiguous disk storage.



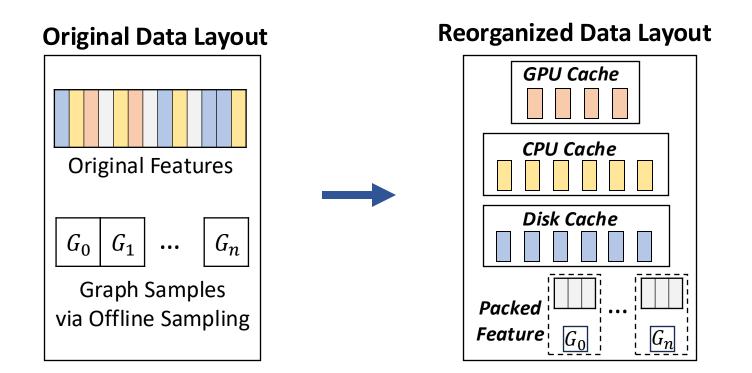
Challenge 1: Feature Packing introduces replication of data.

• Might consume too much disk storage (e.g., 10x on IGB-HOM).



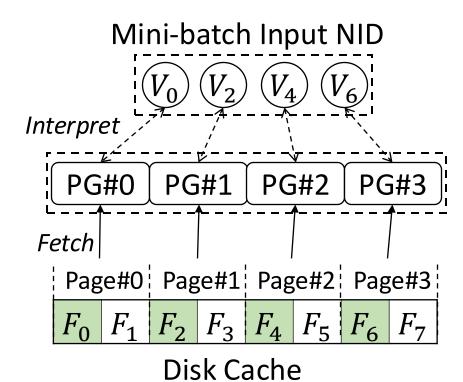
Challenge 1: Feature Packing introduces replication of data.

• Solution: introduce another cache on disk to reduce replication.



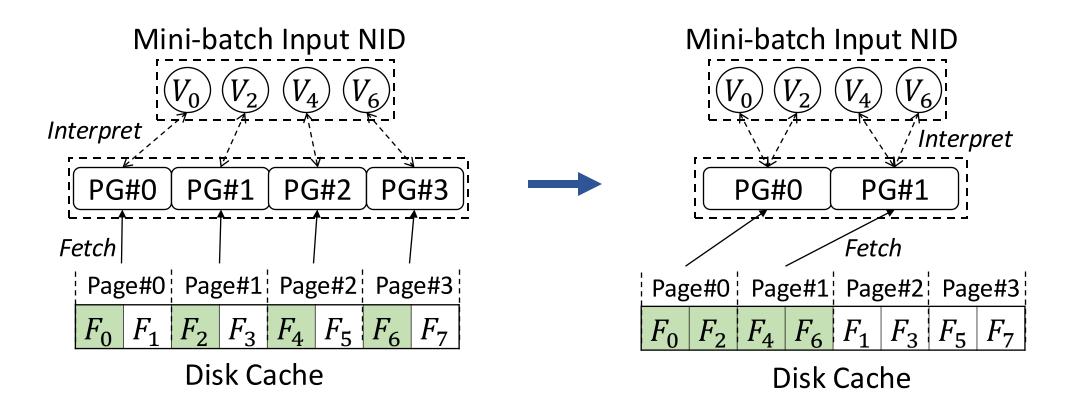
Challenge 2: Fetching data from disk cache is still random read.

• Random read from disk cache involves read amplification.



Challenge 2: Fetching data from disk cache is still random read.

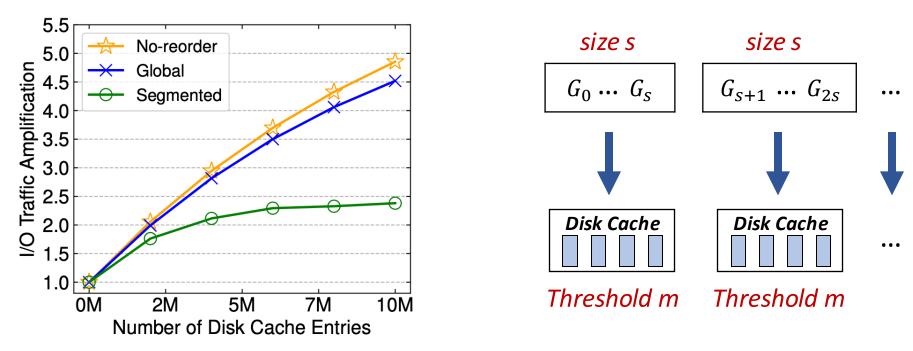
• Solution: reorder disk cache (MinHash) to reduce read amplification.



Challenge 2: Fetching data from disk cache is still random read.

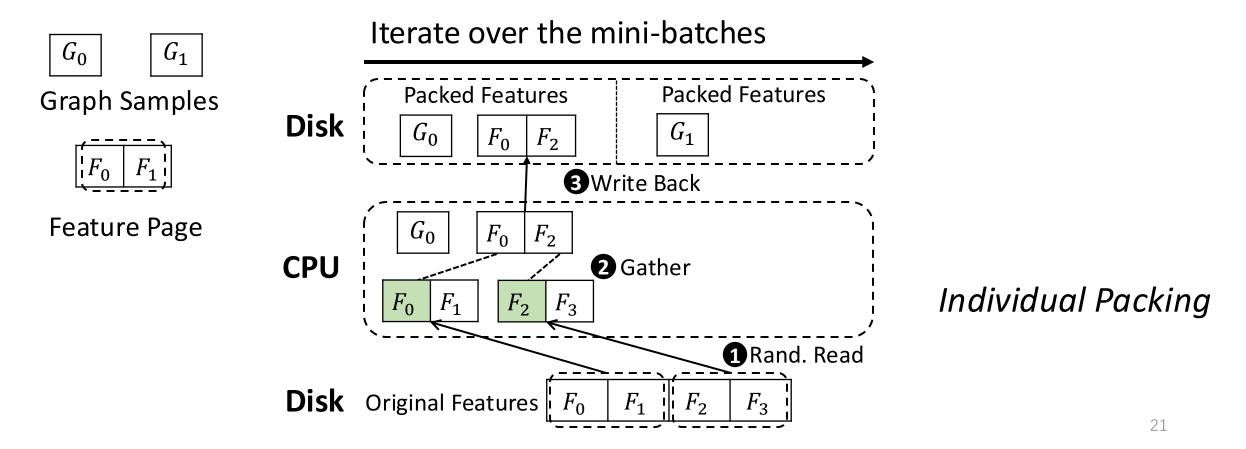
• Solution: reorder disk cache (MinHash) to reduce read amplification.

Segmented Disk Cache with MinHash:



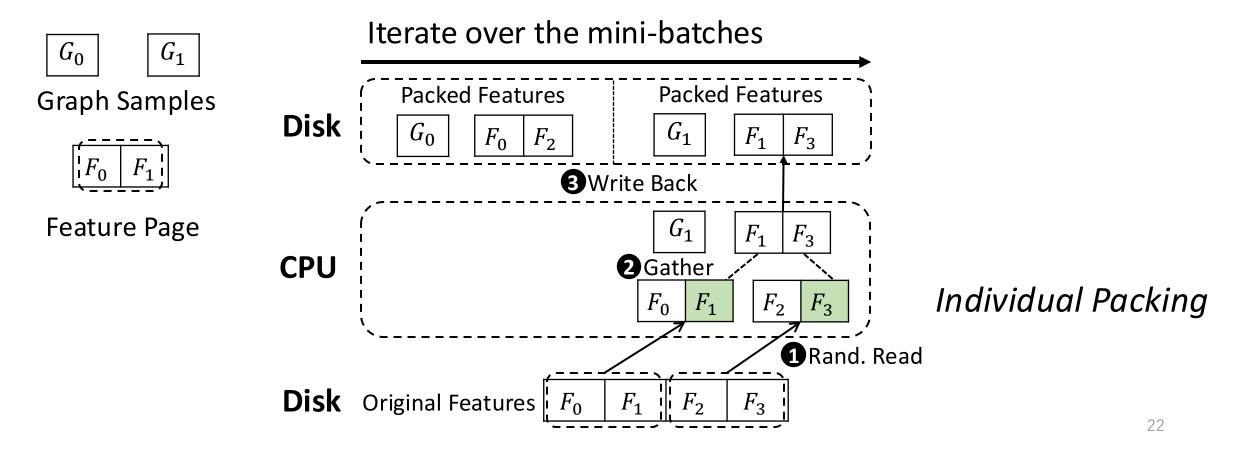
Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.



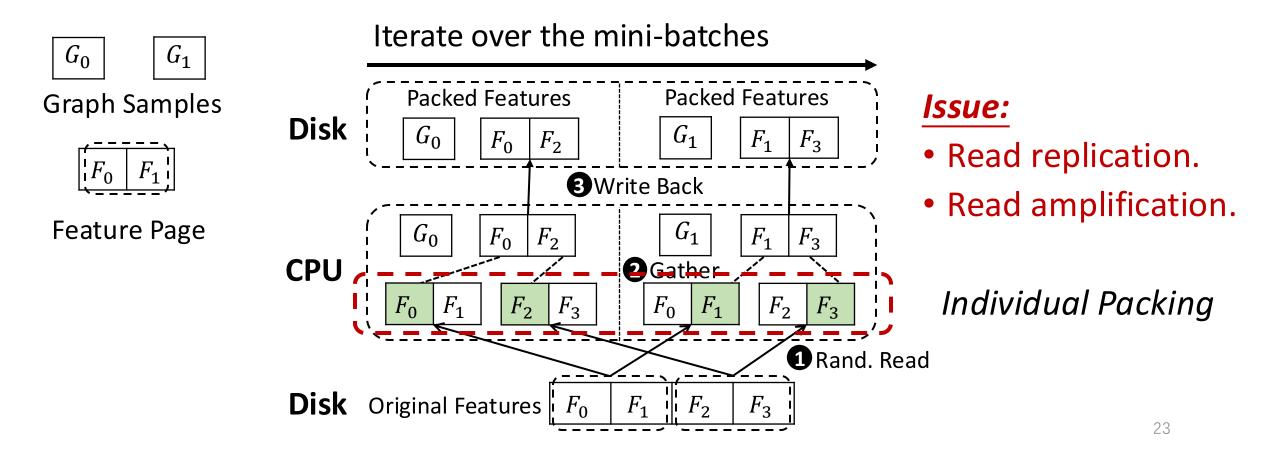
Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.



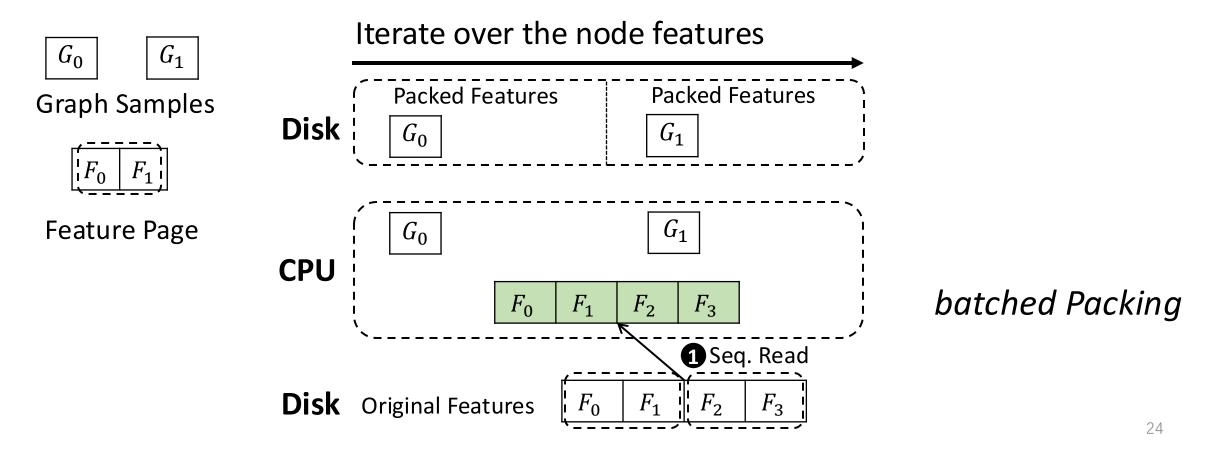
Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.



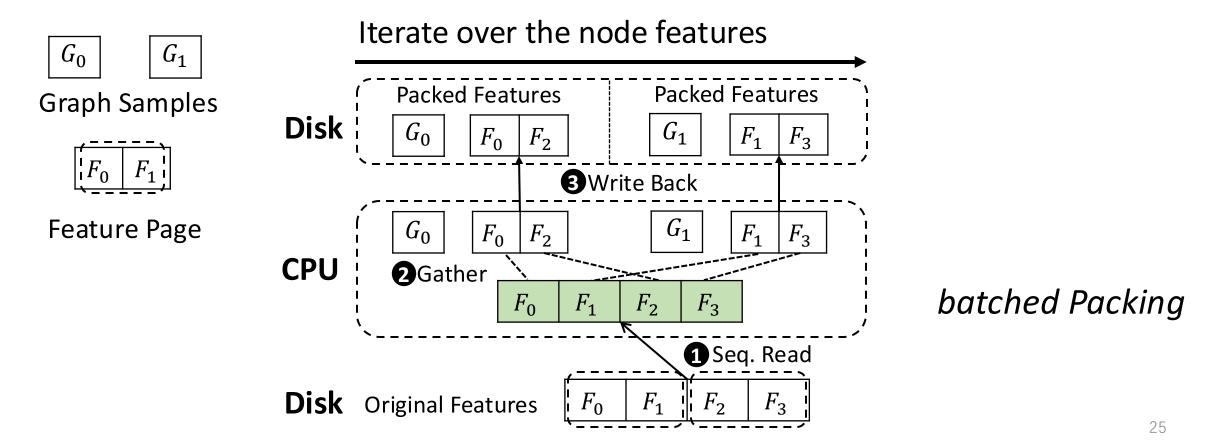
Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.



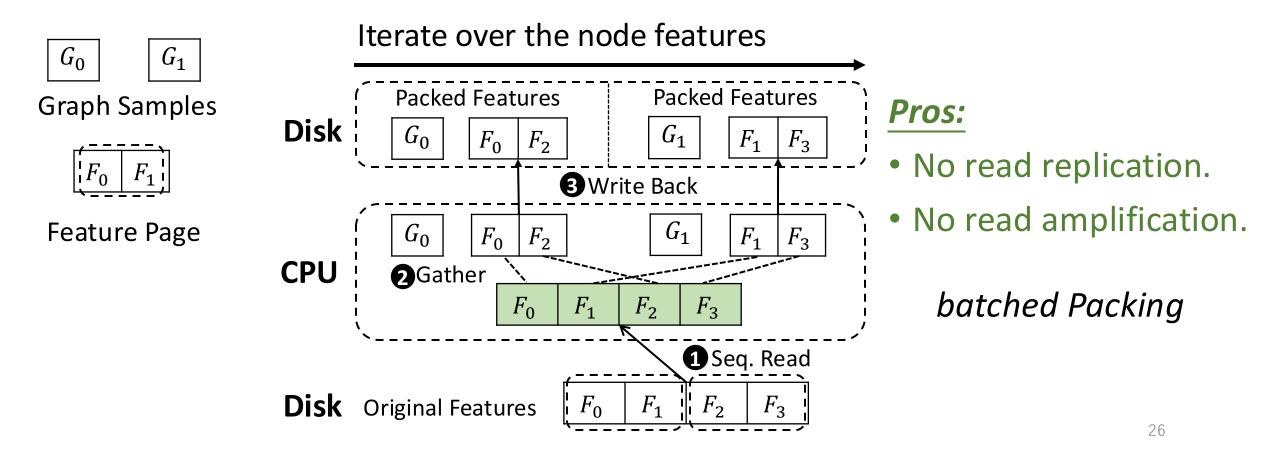
Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.



Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.



DiskGNN: Other Techniques

- Multi-layer feature assembling with low overhead.
- Asynchronous I/O interface (io_uring).
- Overlapping model training with data movement.

• ...

Evaluation

Hardware:

- A single machine with 1 NVIDIA A10 GPU of 24GB memory on AWS EC2.
- DDR4 memory with 25GB/s bandwidth and >10M IOPS.
- 1 NVMe SSD with 3GB/s bandwidth and 625k IOPS.

Baselines:

- Node-wise disk access system: Ginex [VLDB'22].
- Block-wise disk access system: MariusGNN [Eurosys'23].

Datasets:

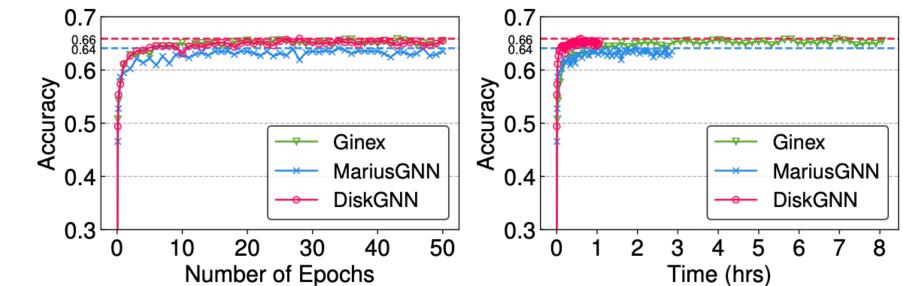
- Ogbn-Papers100M (78GB), Friendster (90GB).
- MAG240M (145GB), IGB-HOM (158GB).

Models:

• GraphSAGE [NeurIPS'17], GAT [ICLR'18].

Evaluation: Model Accuracy & E2E Time

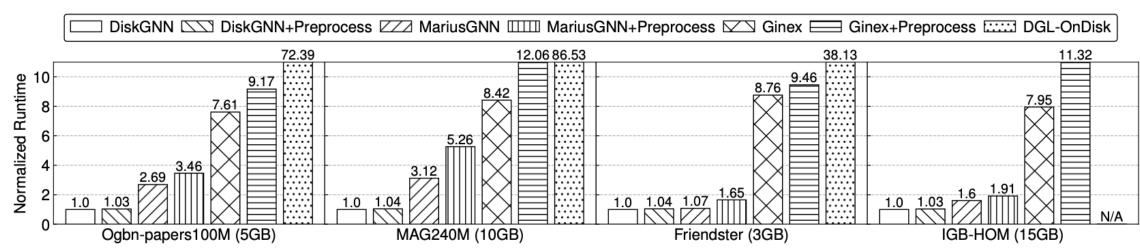
- DiskGNN shows similar convergence rate with Ginex.
- DiskGNN achieves the shortest training time.



Using 1-epoch of pre-sampled subgraphs

Evaluation: Epoch Time Comparison

- DiskGNN outperforms Ginex by ~8x and MariusGNN by ~2x.
- By batched packing, DiskGNN has a low preprocessing overhead (<5%).

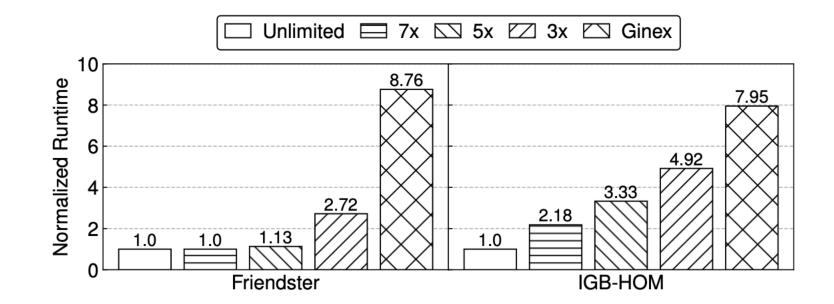


Cache ratio: 10% of whole graph

(a) GraphSAGE

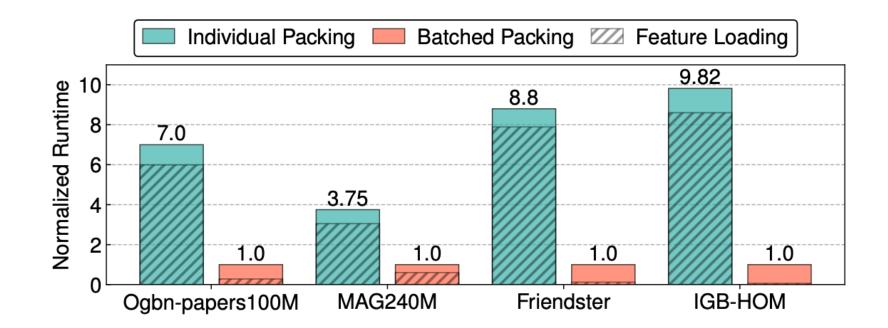
Evaluation: Disk Storage Budgets

• DiskGNN can adapt to different disk storage budgets with adjustable disk cache configuration.



Evaluation: Batched Packing

• Batched packing speeds up preprocessing time by up to 10x.



Takeaway

- **Offline sampling** does not harm accuracy with sufficient mini-batches.
 - Empirically 1-epoch mini-batches are enough for node classification.
- By observing all mini-batches, data accesses can be largely optimized.
 - Better cache management to reduce I/O volume.
 - Aligned disk data placement to mitigate read amplification.

Code available at https://github.com/Liu-rj/DiskGNN.

Personal Homepage: <u>https://liu-rj.github.io/</u> (Renjie Liu), <u>https://yichuan520030910320.github.io/</u> (Yichuan Wang).