
DiskGNN: Bridging I/O Efficiency and Model Accuracy for
Out-of-Core GNN Training

1

𝐑𝐞𝐧𝐣𝐢𝐞 𝐋𝐢𝐮∗1, 𝐘𝐢𝐜𝐡𝐮𝐚𝐧𝐖𝐚𝐧𝐠∗2, Xiao Yan3, Haitian Jiang4,

Zhenkun Cai5, Minjie Wang5, Bo Tang
1

, Jinyang Li4

1SUSTech, 2UC Berkeley, 3CPII HK, 4New York University, 5AWS 

*Equal Contribution



Graph Neural Network (GNN)

2

?

A
B

D
C

F

G E

?

• Learn representation by neighbor aggregation and message passing:
ℎ𝑣
𝑘 = 𝜎[𝐴𝐺𝐺ᵏ({𝑊ᵏℎᵤᵏ⁻¹, ∀𝑢 ∈ 𝑁(𝑣)})]

Node Classification Link Prediction Graph Classification

B

C

DG

H

F

E

A K

M

B

C

DG

H

F

E

A K

M

• Down-stream applications:



Training Graph Neural Network

3

• Graph Sampling: Sample multi-hop neighbors of the seed node.

• Feature Loading: Load features of the sampled nodes.

• Model Training: Compute GNN forward/backward traces.

Graph Sampling Feature Loading Model Training

Fo
rw

ard
B

ackw
ard

B

C

DG

H

F

E

A K

M

B

C

G

E

A K

M



Before Training GNNs…

4

• The whole graph will be loaded from disk to memory.

Disk

CPU GPU

B

C

DG

H

F

E

A K

M



Before Training GNNs…

5

• The whole graph will be loaded from disk to memory.

• Not feasible for large graphs in resource-constrained environments.

Disk

GPUCPU

Memory

Disk

Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS

C

B

DG

E

F

H

A K

M

B

C

DG

H

F

E

A K

M



Before Training GNNs…

6

• We can only store the whole large graphs on disk.

• How to train GNNs in reasonable time on slower storage?

Disk

CPU

B

C

DG

H

F

E

A K

M

?

B

C

DG

H

F

E

A K

M

GPU

Memory

Disk

Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS



Out-of-core GNN Training

7

Problem: Existing systems either lack efficiency or degrade model accuracy.

Node-wise disk access: Suffer from Disk Read Amplification.

Block-wise disk access: Suffer from Degraded Model Accuracy.



Out-of-core GNN Training

8

Node-wise disk access (Ginex, GIDS, Helios):

• Fine-grained accesses are smaller than a disk page (4KB).

A

G
C

E

A

G
C

E

𝐹𝐴 𝐹𝐵 𝐹𝐶 𝐹𝐷 𝐹𝐸 𝐹𝐹 𝐹𝐺 𝐹𝐻

Disk Feature Layout

Random read

Feature Loading
CPU

Disk

2x Read Amplification!



Out-of-core GNN Training

9

Node-wise disk access (Ginex, GIDS, Helios):

• Fine-grained accesses are smaller than a disk page (4KB).

A

G
C

E

A

G
C

E

𝐹𝐴 𝐹𝐵 𝐹𝐶 𝐹𝐷 𝐹𝐸 𝐹𝐹 𝐹𝐺 𝐹𝐻

Disk Feature Layout

Random read

Feature Loading
CPU

Disk

8x read amplification when feature dimension is 128 (FP32)!



Out-of-core GNN Training

10

Block-wise disk access (MariusGNN):

• Cross-partition edges are ignored during sampling.

Sequential Read

CPU

Disk A D

C
E

H
F

K

𝐹𝐵 𝐹𝐺𝐹𝐻 𝐹𝐹 𝐹𝐾𝐹𝐴 𝐹𝐶 𝐹𝐷 𝐹𝐸

A D

C
E

𝐹𝐴 𝐹𝐶 𝐹𝐷 𝐹𝐸

B

G



Out-of-core GNN Training

11

Block-wise disk access (MariusGNN):

• Cross-partition edges are ignored during sampling.

Sequential Read

Sample

CPU

Disk A BD

GC
E

H
F

K

𝐹𝐵 𝐹𝐺𝐹𝐻 𝐹𝐹 𝐹𝐾𝐹𝐴 𝐹𝐶 𝐹𝐷 𝐹𝐸

A D

C
E

𝐹𝐴 𝐹𝐶 𝐹𝐷 𝐹𝐸 𝐹𝐴 𝐹𝐶 𝐹𝐸

A

G

C
Ex

Degrade Model Accuracy!
(~2% in practice)



DiskGNN: Offline Sampling

12

Sampling & training can be decoupled:

• Observation: accuracy is not harmed with sufficient minibatches.

Graph Sample

Model Train

Graph Sample

Model Train

Interleaved Execution Offline Sampling



DiskGNN: Offline Sampling

13

Benefits to out-of-core training:

• Better feature cache strategy: less disk I/O volume.

• Better disk data layout: lower read amplification.

Graph Sample

Model Train

Graph Sample

Model Train

Interleaved Execution Offline Sampling



DiskGNN: System Design

14

Built on top of offline sampling:

• Cache node features in GPU and CPU memory by global hotness.

…

Graph Samples
via Offline Sampling

Original Features

GPU Cache

CPU Cache

Original Data Layout

𝐺0 𝐺1 𝐺𝑛

Reorganized Data Layout



DiskGNN: System Design

15

Built on top of offline sampling:

• Cache node features in GPU and CPU memory by global hotness.

• Pack cache-missed features in contiguous disk storage.

…

GPU Cache

CPU Cache

Packed
Feature 𝐺0 𝐺𝑛

Reorganized Data Layout

…

Graph Samples
via Offline Sampling

Original Features

𝐺0 𝐺1 𝐺𝑛

Original Data Layout



DiskGNN: Challenges & Solutions

16

Challenge 1: Feature Packing introduces replication of data.

• Might consume too much disk storage (e.g., 10x on IGB-HOM).



DiskGNN: Challenges & Solutions

17

Challenge 1: Feature Packing introduces replication of data.

• Solution: introduce another cache on disk to reduce replication.

…

GPU Cache

CPU Cache

Packed
Feature 𝐺0 𝐺𝑛

Reorganized Data Layout

…

Graph Samples
via Offline Sampling

Original Features

𝐺0 𝐺1 𝐺𝑛

Original Data Layout

Disk Cache



DiskGNN: Challenges & Solutions

18

Challenge 2: Fetching data from disk cache is still random read.

• Random read from disk cache involves read amplification.

𝑉0 𝑉2 𝑉4 𝑉6

Mini-batch Input NID

𝐹0 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7

Page#0 Page#1 Page#2 Page#3

Disk Cache

PG#0

Interpret

Fetch

PG#1 PG#2 PG#3



DiskGNN: Challenges & Solutions

19

Challenge 2: Fetching data from disk cache is still random read.

• Solution: reorder disk cache (MinHash) to reduce read amplification.

𝑉0 𝑉2 𝑉4 𝑉6

Mini-batch Input NID

𝐹0 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7

Page#0 Page#1 Page#2 Page#3

Disk Cache

𝐹0 𝐹2 𝐹4 𝐹6 𝐹1 𝐹3 𝐹5 𝐹7

Page#0 Page#1 Page#2 Page#3

PG#0

Interpret

Fetch

Interpret

Fetch

Disk Cache

𝑉0 𝑉2 𝑉4 𝑉6

Mini-batch Input NID

PG#0 PG#1PG#1 PG#2 PG#3



DiskGNN: Challenges & Solutions

20

Challenge 2: Fetching data from disk cache is still random read.

• Solution: reorder disk cache (MinHash) to reduce read amplification.

Segmented Disk Cache with MinHash:

…𝐺0 𝐺𝑠 …𝐺𝑠+1 𝐺2𝑠 …

Disk Cache Disk Cache

size s

Threshold m

size s

Threshold m

…



DiskGNN: Challenges & Solutions

21

Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

Original Features

𝐹0 𝐹2𝐺0 𝐺1

Packed FeaturesPacked Features

CPU

Disk

1

𝐹0 𝐹1 𝐹2 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

Rand. Read

3 Write Back

𝐺0 𝐹0 𝐹2

Disk

2 Gather

Graph Samples

𝐺0 𝐺1

Feature Page

𝐹0 𝐹1

Individual Packing



DiskGNN: Challenges & Solutions

22

Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

Original Features

𝐹0 𝐹2𝐺0 𝐺1

Packed FeaturesPacked Features

CPU

Disk

1

𝐹1 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

Rand. Read

3 Write Back

𝐺1 𝐹1 𝐹3

Disk

2 Gather

Graph Samples

𝐺0 𝐺1

Feature Page

𝐹0 𝐹1

Individual Packing



DiskGNN: Challenges & Solutions

23

Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

Original Features

𝐹0 𝐹2𝐺0 𝐺1

Packed FeaturesPacked Features

CPU

Disk

1

𝐹1 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3 𝐹0 𝐹1 𝐹2 𝐹3

Rand. Read

3 Write Back

𝐺0 𝐺1 𝐹1 𝐹3𝐹0 𝐹2

Disk

2 Gather

Graph Samples

𝐺0 𝐺1

Feature Page

𝐹0 𝐹1

Issue:

• Read replication.

• Read amplification.

Individual Packing



DiskGNN: Challenges & Solutions

24

Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.

Graph Samples

𝐺0 𝐺1

Feature Page

𝐹0 𝐹1

Iterate over the node features

𝐺0

𝐹0 𝐹1 𝐹2 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

1 Seq. Read

𝐺0 𝐺1

Packed FeaturesPacked Features

CPU

Disk

Disk Original Features

batched Packing

𝐺1



DiskGNN: Challenges & Solutions

25

Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.

Graph Samples

𝐺0 𝐺1

Feature Page

𝐹0 𝐹1

Iterate over the node features

𝐺0 𝐺1

𝐹0 𝐹1 𝐹2 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

𝐹1 𝐹3𝐹0 𝐹2

1 Seq. Read

2 Gather

𝐹0 𝐹2𝐺0 𝐺1

Packed FeaturesPacked Features

𝐹1 𝐹3

3 Write Back

CPU

Disk

Disk Original Features

batched Packing



DiskGNN: Challenges & Solutions

26

Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.

Graph Samples

𝐺0 𝐺1

Feature Page

𝐹0 𝐹1

Pros:

• No read replication.

• No read amplification.

Iterate over the node features

𝐺0 𝐺1

𝐹0 𝐹1 𝐹2 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

𝐹1 𝐹3𝐹0 𝐹2

1 Seq. Read

2 Gather

𝐹0 𝐹2𝐺0 𝐺1

Packed FeaturesPacked Features

𝐹1 𝐹3

3 Write Back

CPU

Disk

Disk Original Features

batched Packing



DiskGNN: Other Techniques

27

• Multi-layer feature assembling with low overhead.

• Asynchronous I/O interface (io_uring).

• Overlapping model training with data movement.

• …



Evaluation

28

Hardware:
• A single machine with 1 NVIDIA A10 GPU of 24GB memory on AWS EC2.
• DDR4 memory with 25GB/s bandwidth and >10M IOPS.
• 1 NVMe SSD with 3GB/s bandwidth and 625k IOPS.

Baselines:
• Node-wise disk access system: Ginex [VLDB’22].
• Block-wise disk access system: MariusGNN [Eurosys’23].

Datasets:
• Ogbn-Papers100M (78GB), Friendster (90GB).
• MAG240M (145GB), IGB-HOM (158GB).

Models:
• GraphSAGE [NeurIPS’17], GAT [ICLR’18].



Evaluation: Model Accuracy & E2E Time

29

• DiskGNN shows similar convergence rate with Ginex.

• DiskGNN achieves the shortest training time.

Using 1-epoch of pre-sampled subgraphs



Evaluation: Epoch Time Comparison

30

• DiskGNN outperforms Ginex by ~8x and MariusGNN by ~2x.

• By batched packing, DiskGNN has a low preprocessing overhead (<5%).

Cache ratio: 10% of whole graph



Evaluation: Disk Storage Budgets

31

• DiskGNN can adapt to different disk storage budgets with adjustable 
disk cache configuration.



Evaluation: Batched Packing

32

• Batched packing speeds up preprocessing time by up to 10x.



Takeaway
• Offline sampling does not harm accuracy with sufficient mini-batches.

• Empirically 1-epoch mini-batches are enough for node classification.

• By observing all mini-batches, data accesses can be largely optimized.
• Better cache management to reduce I/O volume.

• Aligned disk data placement to mitigate read amplification.

33

Code available at https://github.com/Liu-rj/DiskGNN.

Personal Homepage: https://liu-rj.github.io/ (Renjie Liu), 
https://yichuan520030910320.github.io/ (Yichuan Wang).

https://github.com/Liu-rj/DiskGNN
https://github.com/Liu-rj/DiskGNN
https://github.com/Liu-rj/DiskGNN
https://liu-rj.github.io/
https://liu-rj.github.io/
https://liu-rj.github.io/
https://yichuan520030910320.github.io/

	Slide 1: DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training
	Slide 2: Graph Neural Network (GNN)
	Slide 3: Training Graph Neural Network
	Slide 4: Before Training GNNs…
	Slide 5: Before Training GNNs…
	Slide 6: Before Training GNNs…
	Slide 7: Out-of-core GNN Training
	Slide 8: Out-of-core GNN Training
	Slide 9: Out-of-core GNN Training
	Slide 10: Out-of-core GNN Training
	Slide 11: Out-of-core GNN Training
	Slide 12: DiskGNN: Offline Sampling
	Slide 13: DiskGNN: Offline Sampling
	Slide 14: DiskGNN: System Design
	Slide 15: DiskGNN: System Design
	Slide 16: DiskGNN: Challenges & Solutions
	Slide 17: DiskGNN: Challenges & Solutions
	Slide 18: DiskGNN: Challenges & Solutions
	Slide 19: DiskGNN: Challenges & Solutions
	Slide 20: DiskGNN: Challenges & Solutions
	Slide 21: DiskGNN: Challenges & Solutions
	Slide 22: DiskGNN: Challenges & Solutions
	Slide 23: DiskGNN: Challenges & Solutions
	Slide 24: DiskGNN: Challenges & Solutions
	Slide 25: DiskGNN: Challenges & Solutions
	Slide 26: DiskGNN: Challenges & Solutions
	Slide 27: DiskGNN: Other Techniques
	Slide 28: Evaluation
	Slide 29: Evaluation: Model Accuracy & E2E Time
	Slide 30: Evaluation: Epoch Time Comparison
	Slide 31: Evaluation: Disk Storage Budgets
	Slide 32: Evaluation: Batched Packing
	Slide 33: Takeaway

