
DiskGNN: Bridging I/O Efficiency and Model Accuracy for
Out-of-Core GNN Training

1

𝐑𝐞𝐧𝐣𝐢𝐞 𝐋𝐢𝐮∗1, 𝐘𝐢𝐜𝐡𝐮𝐚𝐧𝐖𝐚𝐧𝐠∗2, Xiao Yan3, Haitian Jiang4,

Zhenkun Cai5, Minjie Wang5, Bo Tang
1

, Jinyang Li4

1SUSTech, 2UC Berkeley, 3CPII HK, 4New York University, 5AWS 

*Equal Contribution



Graph Neural Network (GNN)
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• Learn representation by neighbor aggregation and message passing:
ℎ𝑣
𝑘 = 𝜎[𝐴𝐺𝐺ᵏ({𝑊ᵏℎᵤᵏ⁻¹, ∀𝑢 ∈ 𝑁(𝑣)})]
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• Down-stream applications:



Training Graph Neural Network
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• Graph Sampling: Sample multi-hop neighbors of the seed node.

• Feature Loading: Load features of the sampled nodes.

• Model Training: Compute GNN forward/backward traces.
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Before Training GNNs…
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• The whole graph will be loaded from disk to memory.
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Before Training GNNs…
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• The whole graph will be loaded from disk to memory.

• Not feasible for large graphs in resource-constrained environments.
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Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS
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Before Training GNNs…
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• We can only store the whole large graphs on disk.

• How to train GNNs in reasonable time on slower storage?
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Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS



Out-of-core GNN Training
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Problem: Existing systems either lack efficiency or degrade model accuracy.

Node-wise disk access: Suffer from Disk Read Amplification.

Block-wise disk access: Suffer from Degraded Model Accuracy.



Out-of-core GNN Training
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Node-wise disk access (Ginex, GIDS, Helios):

• Fine-grained accesses are smaller than a disk page (4KB).
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Out-of-core GNN Training
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Node-wise disk access (Ginex, GIDS, Helios):

• Fine-grained accesses are smaller than a disk page (4KB).
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Out-of-core GNN Training
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Block-wise disk access (MariusGNN):

• Cross-partition edges are ignored during sampling.
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Out-of-core GNN Training
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Block-wise disk access (MariusGNN):

• Cross-partition edges are ignored during sampling.
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DiskGNN: Offline Sampling
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Sampling & training can be decoupled:

• Observation: accuracy is not harmed with sufficient minibatches.

Graph Sample

Model Train
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DiskGNN: Offline Sampling
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Benefits to out-of-core training:

• Better feature cache strategy: less disk I/O volume.

• Better disk data layout: lower read amplification.
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DiskGNN: System Design
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Built on top of offline sampling:

• Cache node features in GPU and CPU memory by global hotness.

…
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DiskGNN: System Design
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Built on top of offline sampling:

• Cache node features in GPU and CPU memory by global hotness.

• Pack cache-missed features in contiguous disk storage.

…
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DiskGNN: Challenges & Solutions
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Challenge 1: Feature Packing introduces replication of data.

• Might consume too much disk storage (e.g., 10x on IGB-HOM).



DiskGNN: Challenges & Solutions
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Challenge 1: Feature Packing introduces replication of data.

• Solution: introduce another cache on disk to reduce replication.

…
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DiskGNN: Challenges & Solutions
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Challenge 2: Fetching data from disk cache is still random read.

• Random read from disk cache involves read amplification.
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DiskGNN: Challenges & Solutions
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Challenge 2: Fetching data from disk cache is still random read.

• Solution: reorder disk cache (MinHash) to reduce read amplification.
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DiskGNN: Challenges & Solutions
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Challenge 2: Fetching data from disk cache is still random read.

• Solution: reorder disk cache (MinHash) to reduce read amplification.

Segmented Disk Cache with MinHash:

…𝐺0 𝐺𝑠 …𝐺𝑠+1 𝐺2𝑠 …
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DiskGNN: Challenges & Solutions
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Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches
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DiskGNN: Challenges & Solutions
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Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

Original Features

𝐹0 𝐹2𝐺0 𝐺1

Packed FeaturesPacked Features

CPU

Disk

1

𝐹1 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

𝐹0 𝐹1 𝐹2 𝐹3

Rand. Read

3 Write Back

𝐺1 𝐹1 𝐹3

Disk

2 Gather

Graph Samples

𝐺0 𝐺1

Feature Page

𝐹0 𝐹1

Individual Packing



DiskGNN: Challenges & Solutions
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Challenge 3: Feature Packing could also take a long time.

• Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches
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DiskGNN: Challenges & Solutions
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Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.
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DiskGNN: Challenges & Solutions
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Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.
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DiskGNN: Challenges & Solutions
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Challenge 3: Feature Packing could also take a long time.

• Solution: change iteration order from mini-batches to node features.
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DiskGNN: Other Techniques
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• Multi-layer feature assembling with low overhead.

• Asynchronous I/O interface (io_uring).

• Overlapping model training with data movement.

• …



Evaluation
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Hardware:
• A single machine with 1 NVIDIA A10 GPU of 24GB memory on AWS EC2.
• DDR4 memory with 25GB/s bandwidth and >10M IOPS.
• 1 NVMe SSD with 3GB/s bandwidth and 625k IOPS.

Baselines:
• Node-wise disk access system: Ginex [VLDB’22].
• Block-wise disk access system: MariusGNN [Eurosys’23].

Datasets:
• Ogbn-Papers100M (78GB), Friendster (90GB).
• MAG240M (145GB), IGB-HOM (158GB).

Models:
• GraphSAGE [NeurIPS’17], GAT [ICLR’18].



Evaluation: Model Accuracy & E2E Time
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• DiskGNN shows similar convergence rate with Ginex.

• DiskGNN achieves the shortest training time.

Using 1-epoch of pre-sampled subgraphs



Evaluation: Epoch Time Comparison
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• DiskGNN outperforms Ginex by ~8x and MariusGNN by ~2x.

• By batched packing, DiskGNN has a low preprocessing overhead (<5%).

Cache ratio: 10% of whole graph



Evaluation: Disk Storage Budgets
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• DiskGNN can adapt to different disk storage budgets with adjustable 
disk cache configuration.



Evaluation: Batched Packing
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• Batched packing speeds up preprocessing time by up to 10x.



Takeaway
• Offline sampling does not harm accuracy with sufficient mini-batches.

• Empirically 1-epoch mini-batches are enough for node classification.

• By observing all mini-batches, data accesses can be largely optimized.
• Better cache management to reduce I/O volume.

• Aligned disk data placement to mitigate read amplification.
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Code available at https://github.com/Liu-rj/DiskGNN.

Personal Homepage: https://liu-rj.github.io/ (Renjie Liu), 
https://yichuan520030910320.github.io/ (Yichuan Wang).

https://github.com/Liu-rj/DiskGNN
https://github.com/Liu-rj/DiskGNN
https://github.com/Liu-rj/DiskGNN
https://liu-rj.github.io/
https://liu-rj.github.io/
https://liu-rj.github.io/
https://yichuan520030910320.github.io/
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