emos

DiskGNN: Bridging /0 Efficiency and Model Accuracy for
Out-of-Core GNN Training

«1 3 4

Renjie Liu**, Yichuan Wang*z, Xiao Yan®, Haitian Jiang*,
Zhenkun Cai5, Minjie Wangs, Bo Tangl,Jinyang Li4
1SUSTech, 2UC Berkeley, 3CPIl HK, 4New York University, 5AWS

*Equal Contribution

¢ aws

NYU

Graph Neural Network (GNN)

* Learn representation by neighbor aggregation and message passing:
h¥ = o[AGG*({W*h, 1, Vu € N(v)]]

* Down-stream applications:

7

Node Classification Link Prediction Graph Classification

Training Graph Neural Network

* Graph Sampling: Sample multi-hop neighbors of the seed node.
* Feature Loading: Load features of the sampled nodes.
* Model Training: Compute GNN forward/backward traces.

Graph Sampling Feature Loading Model Training

plemyoeg

pJem.io

Before Training GNNs...

* The whole graph will be loaded from disk to memory.

CPU GPU

Disk

Before Training GNNs...

* The whole graph will be loaded from disk to memory.

* Not feasible for large graphs in resource-constrained environments.

Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

/Memory\
/ Disk \

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS

Disk

Before Training GNNs...

* We can only store the whole large graphs on disk.
* How to train GNNs in reasonable time on slower storage?

GPU

Memory (DDR4)
Size: GBs, Tput: ~25GB/s, IOPS: >10M IOPS

/Memory\
/ Disk \

Disk (NVMe):
Size: TBs, Tput: ~3GB/s, IOPS: ~1M IOPS

Storage Type RD IOPS (4KB) Bandwidth Price ($/GB)
DRAM (DDR4) >10M 25 GB/s 11.13
AWS NVMe 625k 3 GB/s 0.125
AWS gp3 16k 2.5 GB/s 0.08

Out-of-core GNN Training

Problem: Existing systems either lack efficiency or degrade model accuracy.

Node-wise disk access: Suffer from Disk Read Amplification.

Block-wise disk access: Suffer from Degraded Model Accuracy.

Out-of-core GNN Training

Node-wise disk access (Ginex, GIDS, Helios):
* Fine-grained accesses are smaller than a disk page (4KB).

CPU Q Feature Loading Q E
G — ©
G 6 E © E C E

———

__

Disk Feature Layout 2x Read Amplification!

8

Out-of-core GNN Training

Node-wise disk access (Ginex, GIDS, Helios):
* Fine-grained accesses are smaller than a disk page (4KB).

CPU Q Feature Loading Q E
G — ©
G 6 E © E C E

———

__

Disk Feature Layout

8x read amplification when feature dimension is 128 (FP32)!

Out-of-core GNN Training

Block-wise disk access (MariusGNN):
* Cross-partition edges are ignored during sampling.

CPU (A—D)
Disk (A %e;t:e;tgl_rqga;_____""'--——__
@\®/®

F, | F, | Fp | Fg Fy | Fr | Fx Fy | F,

Out-of-core GNN Training

Block-wise disk access (MariusGNN):
* Cross-partition edges are ignored during sampling.

CPU (A)—0) &) E Degrade Model Accuracy!
:\ ® (~“2% in practice)
Sample -
© (& m—— G,,x E E

Disk @ equentiaIRead G
K S O~

F, | F, | Fp | Fg Fy | Fr | Fx Fy | F,

11

DiskGNN: Offline Sampling

Sampling & training can be decoupled:

e Observation: accuracy is not harmed with sufficient minibatches.

Graph Sample

SE| |k

_____ \ 15 SRR N 15 RN
Model Train

Interleaved Execution

Graph Sample

oG ofod

Model Train

Offline Sampling

DiskGNN: Offline Sampling

Graph Sample Graph Sample

% o o0,

Model Train Model Train

Interleaved Execution Offline Sampling

Benefits to out-of-core training:

 Better feature cache strategy: less disk I/O volume.
* Better disk data layout: lower read amplification.

DiskGNN: System Design

Built on top of offline sampling:
* Cache node features in GPU and CPU memory by global hotness.

Original Data Layout Reorganized Data Layout
GPU Cache

Orignal ea ik

riginal Features
q

Go |Gy | - |Gy

Graph Samples
via Offline Sampling

DiskGNN: System Design

Built on top of offline sampling:
* Cache node features in GPU and CPU memory by global hotness.
* Pack cache-missed features in contiguous disk storage.

Original Data Layout Reorganized Data Layout
GPU Cache
Original Feat CPU Cache
riginal Features
g —, |l000000
Go| Gy | - |Gy
Graph Samples TTT1 [T
via Offline Sampling Packed | A
Feature: |, L |Gyl

DiskGNN: Challenges & Solutions

Challenge 1: Feature Packing introduces replication of data.
* Might consume too much disk storage (e.g., 10x on IGB-HOM).

12
i 1049 [1 Friendster
§-10 Z 74 1GB-HOM
N7
g 6 54 % 4.4 493
g 4 Z 296
a 2+ 2 1.61
= 0 % // VA 9.15 O'ﬁp,oz 0.169,02
10% 15% 20% 30% 50% 70%

CPU Memory Cache Size

DiskGNN: Challenges & Solutions

Challenge 1: Feature Packing introduces replication of data.
 Solution: introduce another cache on disk to reduce replication.

Original Data Layout Reorganized Data Layout
GPU Cache
. . CPU Cache
Original Features — O [S
q —— By =
_ Disk Cache
Go| Gy | - | Gy

Graph Samples
via Offline Sampling

Packed ! . .
Feature; [|1 1 [G,]

1 1
[T [T

DiskGNN: Challenges & Solutions

Challenge 2: Fetching data from disk cache is still random read.

 Random read from disk cache involves read amplification.

Mini-batch Input NID

W& W G

Interpret

Fo——— A— ____________________

'PG#OIPG#l PG#ZIPG#3]

FetchT T T 7

Page#Oi Page#l Page#zi Page#35

Fo | Fi|F, | F3 1 Fy | FsiFg | Fy
Disk Cache

DiskGNN: Challenges & Solutions

Challenge 2: Fetching data from disk cache is still random read.

 Solution: reorder disk cache (MinHash) to reduce read amplification.

Mini-batch Input NID

59_@9.-.Q

Interpret

Fo——— A— ____________________

| PG#O | PGH1 | PGH2 | PGH3)

FL;c'hT """ T

' Page#0! Page#l: Page#2! Page#3!

Fo | P [F5 | F3 ks | Fs{Fe | Fy

Mini-batch Input NID

VEWE

lnterpret

i Page#Oi Page#l. Page#zi Page#35

Disk Cache

Fo | Fo | Fa [Feily F3iks|Fy

Disk Cache

DiskGNN: Challenges & Solutions

Challenge 2: Fetching data from disk cache is still random read.

 Solution: reorder disk cache (MinHash) to reduce read amplification.

Segmented Disk Cache with MinHash:

| —> Gilobal
—&— Segmented

No-reorder

oM oM 5M 7M 10M
Number of Disk Cache Entries

size s size s
Gg -+ Gy Goyq
Disk Cache Disk Cache
oo (U000

Threshold m Threshold m

20

DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
* Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

Go G4 X
Graph Samples (" Packed Features | Packed Features
....... Disk i [Go| [r [F,] | |G :
I‘Ii'o_) FE I e -éWrit-e_E:a_c_k ____________
Feature Page E Go| [7 |F, :
CPU ; ~ 7 @Gather |
o A R S ' Individual Packing

— - = — — - = —

DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
* Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

Go G4 X
Graph Samples (" Packed Features | Packed Features
——————— DISk E GO FO FZ é Gl Fl F3 :
I‘Ii'o_) FE I - -éWrit-e_E:a_c_k ___________
Feature Page E AR i
CPU @Gather .-~ |
: Fo |F, | |F, |Fs |+ Individual Packing

—————————————————————————————————

— - = — — - = —

DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
* Feature packing requires to read all feature replicas to memory.

Iterate over the mini-batches

GO Gl >
Graph Samples {’__P-a-CEe_d- I_:e_a_tll;e_s _______ Egc-k_ea_F-ea'Eu_r-e;__\‘, Issue-
_______ Disk | Go Fy | F, G4 F, | F; i . .
F | F, [N Sl g S . ; * Read replication.
A ; Write Back . .
B RRCLLLLEER . * Read amplification.
Feature Page : Go ITO F, G4 F, | F, i
CPU [— — —="— — & — —i@Gather < — —"w —1y
IV |Fy |F, | |F, |F; Fo |Fy | |F, |Fs | ' Individual Packing
‘e = — — —_— — p—— |

— - = — — - = —

DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
e Solution: change iteration order from mini-batches to node features.

Iterate over the node features
Go Gq >

————————————————————————————————————

Graph Samples :’

) = ——

——————
———————————————————————————————————

N o e o - - -

batched Packing

———————————————

—————————————————

DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
e Solution: change iteration order from mini-batches to node features.

Iterate over the node features

GO G1 >
Graph Samples . :" Packed Features Packed Features “:
....... Disk: |G| |Fy |F, | | |G| |F|Fs| !
1 1 N e e e - = = 7 . - - - - /
"F_'O_ | F} : Qerte Back

Feature Page | | Gy| |F, |F, Gi| |F |F; :
! N el e T :
CPU | @Gather e - .

Fo |F | F | Fs batched Packing

N 65&] ‘Read

———————————————

—————————————————

DiskGNN: Challenges & Solutions

Challenge 3: Feature Packing could also take a long time.
e Solution: change iteration order from mini-batches to node features.

Iterate over the node features

GO G]_ >
Graph Samples . :" Packed Features Packed Features “: Pros:
. Disk | Go | |Fy | F, Gy F, |F, i ; |
! | AEREEEEEEEE R t----- ’* No read replication.
"F_'O_ | f‘} €) Write Back P
Feature Page HraEran 6| [r |/ + °No read amplification.
CPU ! @Gather e !
Fo |F | F | Fs batched Packing
N '(iéé& Read

———————————————

== == 26

DiskGNN: Other Techniques

* Multi-layer feature assembling with low overhead.

* Asynchronous I/O interface (io_uring).
e Overlapping model training with data movement.

Evaluation

Hardware:
* A single machine with 1 NVIDIA A10 GPU of 24GB memory on AWS EC2.
 DDR4 memory with 25GB/s bandwidth and >10M IOPS.
1 NVMe SSD with 3GB/s bandwidth and 625k IOPS.

Baselines:
* Node-wise disk access system: Ginex [VLDB’22].
* Block-wise disk access system: MariusGNN [Eurosys’23].

Datasets:
e Ogbn-Papers100M (78GB), Friendster (90GB).
« MAG240M (145GB), IGB-HOM (158GB).

Models:
* GraphSAGE [NeurlIPS’17], GAT [ICLR’18].

Evaluation: Model Accuracy & E2E Time

* DiskGNN shows similar convergence rate with Ginex.
* DiskGNN achieves the shortest training time.

Using 1-epoch of pre-sampled subgraphs

P >

(&) (&

S s 0.5F¢

§ —— Ginex § —s+— Ginex

< 0.4 —— MariusGNN || < ¢ 4} —— MariusGNN

—e— DiskGNN —e— DiskGNN
0.3 ' - ' - - 0.3 - . : : : . : :
0 10 20 30 40 50 0O 1 2 3 4 5 6 7 8

Number of Epochs Time (hrs)

Normalized Runtime

Evaluation: Epoch Time Comparison

* DiskGNN outperforms Ginex by ~8x and MariusGNN by ~2x.
e By batched packing, DiskGNN has a low preprocessing overhead (<5%).

Cache ratio: 10% of whole graph

[1 DiskGNN X\J DiskGNN+Preprocess .24 MariusGNN [IIII1 MariusGNN+Preprocess &N Ginex = Ginex+Preprocess L.:.1 DGL-OnDisk

72.39 12.0686.5 38.13 1132

10 817 fonl | 8.42 I 8.76 2y [
8f 761 E= 1] oNE e D
6r T 5.26 et o

2.69 M1~ =4 .o e LNy N e

7 V, o b 1.91
2l 1.0 1.03 / e [1.0 1.04 / boon] [1.0 1,04 1.07 18 el [1.0 1.03 &5
oLl 1NN SRR INNZZ TIPS ERINNIZZINNT S I== 12 EINNY N/A

Ogbn-papers100M (5GB) MAG240M (10GB) Friendster (3GB) IGB-HOM (15GB)

(a) GraphSAGE

30

Evaluation: Disk Storage Budgets

* DiskGNN can adapt to different disk storage budgets with adjustable

disk cache configuration.

Normalized Runtime

10

[] Unlimited B 7x KN 5x

/1 3x XN Ginex

o NN~ OO

8.76

7.95
;
579 3.33
7 _ 2.18 \\ /
l— \1\1\3\ /// - R\M%

Friendster

31

Evaluation: Batched Packing

e Batched packing speeds up preprocessing time by up to 10x.

| = Individual Packing =51 Batched Packing 7771 Feature Loading |
£ gl] 7
: o g 7, //
5 6
S // 3.75 % /
= 7,
5 2f / 7 / _ / |
2 D e O wie O e U
Ogbn-papers100M MAG240M Friendster IGB-HOM

Takeaway

» Offline sampling does not harm accuracy with sufficient mini-batches.
* Empirically 1-epoch mini-batches are enough for node classification.

* By observing all mini-batches, data accesses can be largely optimized.

* Better cache management to reduce I/O volume.
* Aligned disk data placement to mitigate read amplification.

Code available at https://github.com/Liu-rj/DiskGNN.

Personal Homepage: https://liu-rj.github.io/ (Renjie Liu),
https://yichuan520030910320.github.io/ (Yichuan Wang).

33

https://github.com/Liu-rj/DiskGNN
https://github.com/Liu-rj/DiskGNN
https://github.com/Liu-rj/DiskGNN
https://liu-rj.github.io/
https://liu-rj.github.io/
https://liu-rj.github.io/
https://yichuan520030910320.github.io/

	Slide 1: DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training
	Slide 2: Graph Neural Network (GNN)
	Slide 3: Training Graph Neural Network
	Slide 4: Before Training GNNs…
	Slide 5: Before Training GNNs…
	Slide 6: Before Training GNNs…
	Slide 7: Out-of-core GNN Training
	Slide 8: Out-of-core GNN Training
	Slide 9: Out-of-core GNN Training
	Slide 10: Out-of-core GNN Training
	Slide 11: Out-of-core GNN Training
	Slide 12: DiskGNN: Offline Sampling
	Slide 13: DiskGNN: Offline Sampling
	Slide 14: DiskGNN: System Design
	Slide 15: DiskGNN: System Design
	Slide 16: DiskGNN: Challenges & Solutions
	Slide 17: DiskGNN: Challenges & Solutions
	Slide 18: DiskGNN: Challenges & Solutions
	Slide 19: DiskGNN: Challenges & Solutions
	Slide 20: DiskGNN: Challenges & Solutions
	Slide 21: DiskGNN: Challenges & Solutions
	Slide 22: DiskGNN: Challenges & Solutions
	Slide 23: DiskGNN: Challenges & Solutions
	Slide 24: DiskGNN: Challenges & Solutions
	Slide 25: DiskGNN: Challenges & Solutions
	Slide 26: DiskGNN: Challenges & Solutions
	Slide 27: DiskGNN: Other Techniques
	Slide 28: Evaluation
	Slide 29: Evaluation: Model Accuracy & E2E Time
	Slide 30: Evaluation: Epoch Time Comparison
	Slide 31: Evaluation: Disk Storage Budgets
	Slide 32: Evaluation: Batched Packing
	Slide 33: Takeaway

