
DS SERVE: A Framework for Efficient and Scalable Neural Retrieval
Jinjian Liu1∗, Yichuan Wang1∗, Xinxi Lyu2, Rulin Shao3, Joseph E. Gonzalez1, Matei Zaharia1, Sewon Min1

1UC Berkeley 2UIUC 3University of Washington ∗Equal contribution

Key Result: RAG Performance with DS SERVE + LLM

DS SERVE consistently improves accuracy across reasoning-intensive benchmarks.

Figure: Downstream accuracy (%) with LLaMa 3.1 8B Instruct; Exact Search provides further gains

Overview

DS SERVE transforms large in-house datasets into high-throughput, memory-efficient neural retrieval
systems with web UI and API.

▶ Scale: 400B words, 2B vectors, 5TB embeddings

▶ Throughput: Up to 10,000 QPS (index-level)

▶ Memory: <200 GB RAM

▶ Accuracy: Matches/exceeds commercial search APIs

DS SERVE is the largest publicly accessible vector store.

Motivation: Why is This Hard?

▶ Scaling neural retrieval is hard: High throughput + low memory + strong accuracy at billion-scale is
non-trivial.

▶ Traditional ANN doesn’t scale: IVFPQ suffers latency-accuracy tradeoffs; HNSW demands excessive
RAM.

▶ End-to-end tooling is lacking: Few frameworks offer ready-to-use retrieval with web UI, API, and
feedback collection.

System Architecture

Figure: DS SERVE pipeline: Query → ANN retrieval → Optional reranking → Top-k results with voting

Datastore: CompactDS

DS SERVE is built on CompactDS, a high-quality corpus comparable to much larger Common Crawl data:

▶ 380B words (∼2B vectors)

▶ Web crawl, Wikipedia, research papers

▶ Largest publicly available neural retrieval datastore

Prior work: MS MARCO (≤10M vectors), Wikipedia, BEIR. Commercial DBs impose limits well below billion-scale.

Technical Approach: Why DiskANN?

The Problem with IVFPQ:
▶ Heavy quantization → accuracy loss

▶ Increasing nprobe → throughput drops

▶ Memory-bound at billion scale

DiskANN Solution:
▶ Compressed vectors in RAM

▶ Full-precision vectors + graph on NVMe SSD

▶ Implicit reranking during graph traversal

▶ Massively parallel I/O

Feature IVFPQ (Traditional) DiskANN (DS Serve)

Accuracy Lower: Quantization noise reduces re-
call.

Higher: Full-precision vectors on disk en-
sure high recall.

Throughput ∼100 QPS: More distance computa-
tions.

>10K QPS: Fewer computations via navi-
gation graph and parallel I/O.

Latency Higher: Sequential inverted list scan-
ning.

Lower: Efficient graph traversal.

DiskANN vs IVFPQ

DiskANN is more accurate AND faster than IVFPQ at recommended configs.

Figure: DiskANN: ∼2.3× throughput, ∼2.2× lower latency vs IVFPQ

Applications

1. Retrieval-Augmented Generation (RAG)
▶ Superior accuracy vs commercial search

▶ Low latency for interactive use

▶ Powers efficient RAG with high-quality results

2. Data Attribution & Curation
▶ Semantic attribution over pre-training corpora

▶ More robust than N-gram matching for paraphrased queries

▶ Deduplication, decontamination, filtering

3. Training Search Agents
▶ High-frequency rollouts without rate limits

▶ Free, controllable backend

▶ Removes API bottlenecks in RL training

4. Research Benchmarks
▶ Built-in voting for labeled data collection

▶ Handles long/complex queries effectively

DS SERVE vs Google Search API

DS SERVE: ∼30× throughput, ∼2× lower latency—free of costs.

Optional Search Modes

Diverse Search (UI toggle):

▶ Applies MMR to reduce redundancy

▶ Use when results contain duplicates

Exact Search (GPU required):

▶ Reranks ANN candidates with GritLM

▶ Improves accuracy for harder queries

DiskANN Ablation Studies

Figure: Search list size L controls accuracy-latency tradeoff

L≈100 sufficient for most queries; higher L improves hard queries.

Try It Now!

▶ Web UI: http://api.ds-serve.org:30888/ui
▶ Code: github.com/Berkeley-Large-RAG/RAG-DS-Serve
▶ Paper: Available on project page

Acknowledgements: CompactDS, Massive Serve, FAISS, DiskANN

http://api.ds-serve.org:30888/ui
github.com/Berkeley-Large-RAG/RAG-DS-Serve

